c^2+5c+4=180

Simple and best practice solution for c^2+5c+4=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2+5c+4=180 equation:



c^2+5c+4=180
We move all terms to the left:
c^2+5c+4-(180)=0
We add all the numbers together, and all the variables
c^2+5c-176=0
a = 1; b = 5; c = -176;
Δ = b2-4ac
Δ = 52-4·1·(-176)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-27}{2*1}=\frac{-32}{2} =-16 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+27}{2*1}=\frac{22}{2} =11 $

See similar equations:

| 5x-3+20x=27 | | 2n+1+2n+1+2n=63 | | m-(m-1)=37 | | 2x+8+5x-88=180 | | 2x+8+5-88=180 | | 6u+7=43 | | 13=8a-3(2a+5) | | (2x4+5x3+2x2+7x)/(2x-3)=0 | | 22+2x+x+17=3 | | -7+a=17 | | 4x-8+28x=28 | | -7=8x=1+4x | | 2.25(4x-4)=-2+1-x+12 | | x+5/2=40 | | 1(e+6)=30 | | -x-4(x+3)=-72 | | -(1+x)+2=-(x-1) | | 15.5=-6.5+7(b+6) | | 3-(4x-26)=5(x-3) | | 18x+-1+23x+17=180 | | 16n-18=4 | | x3+3x2−34x−42=0 | | 18x+-1+23x+17=0 | | x+2(2x+2)=4 | | b=-1+0.9/2 | | X+5(-x-1)=7 | | 4(x+1)-5=11 | | 9+5(x-9)=28 | | 45=-7(7x+1)+4(-8x-8) | | 2(x+7)-38=4x-11x+4(x-1) | | 2(x+7)-38=4x-11x+4(x-1 | | 2-(x-3)=15 |

Equations solver categories